首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76595篇
  免费   8422篇
  国内免费   2752篇
电工技术   2442篇
综合类   3148篇
化学工业   26101篇
金属工艺   6746篇
机械仪表   2262篇
建筑科学   5042篇
矿业工程   2106篇
能源动力   2464篇
轻工业   9405篇
水利工程   1117篇
石油天然气   2878篇
武器工业   317篇
无线电   4983篇
一般工业技术   8745篇
冶金工业   3830篇
原子能技术   758篇
自动化技术   5425篇
  2024年   325篇
  2023年   1569篇
  2022年   4152篇
  2021年   4541篇
  2020年   2571篇
  2019年   2568篇
  2018年   2705篇
  2017年   3329篇
  2016年   4347篇
  2015年   4717篇
  2014年   5251篇
  2013年   5473篇
  2012年   4239篇
  2011年   4055篇
  2010年   3195篇
  2009年   3444篇
  2008年   3104篇
  2007年   4429篇
  2006年   4476篇
  2005年   3790篇
  2004年   2632篇
  2003年   2471篇
  2002年   1926篇
  2001年   1432篇
  2000年   1306篇
  1999年   806篇
  1998年   612篇
  1997年   515篇
  1996年   536篇
  1995年   366篇
  1994年   369篇
  1993年   304篇
  1992年   268篇
  1991年   254篇
  1990年   248篇
  1989年   169篇
  1988年   105篇
  1987年   112篇
  1986年   102篇
  1985年   104篇
  1984年   111篇
  1983年   59篇
  1982年   77篇
  1981年   68篇
  1980年   78篇
  1979年   33篇
  1978年   32篇
  1977年   28篇
  1964年   34篇
  1962年   64篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
The oxidation/sulphidation behaviour of a Ti‐46.7Al‐1.9W‐0.5Si alloy with a TiAl3 diffusion coating was studied in an environment of H2/H2S/H2O at 850oC. The kinetic results demonstrate that the TiAl3 coating significantly increased the high temperature corrosion resistance of Ti‐46.7Al‐1.9W‐0.5Si. The SEM, EDX, XRD and TEM analysis reveals that the formation of an Al2O3 scale on the surface of the TiAl3‐coated sample was responsible for the enhancement of the corroison resistance. The Ti‐46.7Al‐1.9W‐0.5Si alloy was also modified by Nb ion implantation. The Nb ion implanted and as received sampels were subjected to cyclic oxidation in an open air at 800oC. The Nb ion implantation not only increased the oxidation resistance but also substantially improved the adhesion of scale to the substrate.  相似文献   
22.
Field Static Load Test on Kao-Ping-Hsi Cable-Stayed Bridge   总被引:1,自引:0,他引:1  
Field load testing is an effective method for understanding the behavior and fundamental characteristics of a cable-stayed bridge. This paper presents the results of field static load tests on the Kao-Ping-Hsi cable-stayed bridge, the longest cable-stayed bridge in Taiwan, before it was open to traffic. A total of 40 loading cases, including the unit and distributed bending and torsion loading effects, were conducted to investigate the bridge behavior. The atmospheric temperature effect on the variations of the main girder deflections was also monitored. The results of static load testing include the main girder deflections, the flexural strains of the prestressed concrete girder, and the variations of the cable forces. A three-dimensional finite-element model was developed. The results show that the bridge under the planned load test conditions has linear superposition characteristics and the analytical model shows a very good agreement with the bridge responses. Further discussion of deflection and cable forces of the design specifications for a cable-stayed bridge is also presented.  相似文献   
23.
In this paper, we describe a method for increasing the external efficiency of polymer light‐emitting diodes (LEDs) by coupling out waveguided light with Bragg gratings. We numerically model the waveguide modes in a typical LED structure and demonstrate how optimizing layer thicknesses and reducing waveguide absorption can enhance the grating outcoupling. The gratings were created by a soft‐lithography technique that minimizes changes to the conventional LED structure. Using one‐dimensional and two‐dimensional gratings, we were able to increase the forward‐directed emission by 47 % and 70 %, respectively, and the external quantum efficiency by 15 % and 25 %.  相似文献   
24.
Efficient blue‐, green‐, and red‐light‐emitting organic diodes are fabricated using binuclear platinum complexes as phosphorescent dopants. The series of complexes used here have pyrazolate bridging ligands and the general formula CNPt(μ‐pz)2PtCN (where CN = 2‐(4′,6′‐difluorophenyl)pyridinato‐N,C2′, pz = pyrazole ( 1 ), 3‐methyl‐5‐tert‐butylpyrazole ( 2 ), and 3,5‐bis(tert‐butyl)pyrazole ( 3 )). The Pt–Pt distance in the complexes, which decreases in the order 1 > 2 > 3 , solely determines the electroluminescence color of the organic light‐emitting diodes (OLEDs). Blue OLEDs fabricated using 8 % 1 doped into a 3,5‐bis(N‐carbazolyl)benzene (mCP) host have a quantum efficiency of 4.3 % at 120 Cd m–2, a brightness of 3900 Cd m–2 at 12 V, and Commission Internationale de L'Eclairage (CIE) coordinates of (0.11, 0.24). Green and red OLEDs fabricated with 2 and 3 , respectively, also give high quantum efficiencies (~ 6.7 %), with CIE coordinates of (0.31, 0.63) and (0.59, 0.46), respectively. The current‐density–voltage characteristics of devices made using dopants 2 and 3 indicate that hole trapping is enhanced by short Pt–Pt distances (< 3.1 Å). Blue electrophosphorescence is achieved by taking advantage of the binuclear molecular geometry in order to suppress dopant intermolecular interactions. No evidence of low‐energy emission from aggregate states is observed in OLEDs made with 50 % 1 doped into mCP. OLEDs made using 100 % 1 as an emissive layer display red luminescence, which is believed to originate from distorted complexes with compressed Pt–Pt separations located in defect sites within the neat film. White OLEDs are fabricated using 1 and 3 in three different device architectures, either with one or two dopants in dual emissive layers or both dopants in a single emissive layer. All the white OLEDs have high quantum efficiency (~ 5 %) and brightness (~ 600 Cd m–2 at 10 V).  相似文献   
25.
A simple template‐free high‐temperature evaporation method was developed for the growth of crystalline Si microtubes for the first time. As‐grown Si microtubes were characterized using X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, and room‐temperature photoluminescence. The lengths of the Si tubes can reach several hundreds of micrometers; some of them have lengths on the order of millimeters. Each tube has a uniform outer diameter along its entire length, and the typical outer diameter is ≈ 2–3 μm. Most of the tubes have a wall thickness of ≈ 400–500 nm, though a considerable number of them exhibit a very thin wall thickness of ≈ 50 nm. Room‐temperature photoluminescence measurement shows the as‐synthesized Si microtubes have two strong emission peaks centered at ≈ 589 nm and ≈ 617 nm and a weak emission peak centered at ≈ 455 nm. A possible mechanism for the formation of these Si tubes is proposed. We believe that the present discovery of the crystalline Si microtubes will promote further experimental studies on their physical properties and smart applications.  相似文献   
26.
27.
The probing of the micromechanical properties within a two‐dimensional polymer structure with sixfold symmetry fabricated via interference lithography reveals a nonuniform spatial distribution in the elastic modulus “imprinted” with an interference pattern in work reported by Tsukruk, Thomas, and co‐workers on p. 1324. The image prepared by M. Lemieux and T. Gorishnyy shows how the interference pattern is formed by three laser beams and is transferred to the solid polymer structure. The elastic and plastic properties within a two‐dimensional polymer (SU8) structure with sixfold symmetry fabricated via interference lithography are presented. There is a nonuniform spatial distribution in the elastic modulus, with a higher elastic modulus obtained for nodes (brightest regions in the laser interference pattern) and a lower elastic modulus for beams (darkest regions in the laser interference pattern) of the photopatterned films. We suggest that such a nonuniformity and unusual plastic behavior are related to the variable material properties “imprinted” by the interference pattern.  相似文献   
28.
29.
30.
Three different configurations of Au‐nanoparticle/CdS‐nanoparticle arrays are organized on Au/quartz electrodes for enhanced photocurrent generation. In one configuration, Au‐nanoparticles are covalently linked to the electrode and the CdS‐nanoparticles are covalently linked to the bare Au‐nanoparticle assembly. The resulting photocurrent, φ = 7.5 %, is ca. 9‐fold higher than the photocurrent originating from a CdS‐nanoparticle layer that lacks the Au‐nanoparticles, φ = 0.8 %. The enhanced photocurrent in the Au/CdS nanoparticle array is attributed to effective charge separation of the electron–hole pair by the injection of conduction‐band electrons from the CdS‐ to the Au‐nanoparticles. Two other configurations involving electrostatically stabilized bipyridinium‐crosslinked Au/CdS or CdS/Au nanoparticle arrays were assembled on the Au/quartz crystal. The photocurrent quantum yields in the two systems are φ = 10 % and φ = 5 %, respectively. The photocurrents in control systems that include electrostatically bridged Au/CdS or CdS/Au nanoparticles by oligocationic units that lack electron‐acceptor units are substantially lower than the values observed in the analogous bipyridinium‐bridged systems. The enhanced photocurrents in the bipyridinium‐crosslinked systems is attributed to the stepwise electron transfer of conduction‐band electrons to the Au‐nanoparticles by the bipyridinium relay bridge, a process that stabilizes the electron–hole pair against recombination and leads to effective charge separation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号